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Magnetotransport in superlattices: I. Impurity 
scattering 

P Vasilopoulos and H Hogues 
Dtpartement de Gtnie Physique, Ecole Polytechnique, MontrCal, Canada H3C 3A7 

Received 28 February 1989 

Abstract. The DC conductivity of a superlattice, in the presence of a magnetic field normal 
to its planes, is evaluated when an electric field is applied in the direction of the superlattice 
or parallel to its planes for elastic impurity scattering. Short-range and long-range potentials 
are considered. The effective mass difference between wells and barriers and the interlayer 
tunnelling are taken into account. The period of the Shubnikov-de Haas oscillations changes 
as the Fermi level passes through the minibands. 

1. Introduction 

In the past transport in quantum wells and superlattices has received considerable 
attention. Recently, the integral quantum Hall effect has been observed in superlattices 
[l], when a magnetic field is applied normal to its planes. A theoretical investigation 
of the Hall conductivity ay, has been reported [2] but, to our knowledge, a similar 
investigation for this situation, of the conductivity components a,, and a,, is missing. 

In this paper we evaluate the conductivity along the direction of the electric field 
taken perpendicular (a,,) or parallel (a,,) to the superlattice direction z .  The magnetic 
field is taken along the z direction and the dominant scattering centres are assumed to 
be static screened impurities only within the wells. We also take account of the effective 
mass difference between wells and barriers and of the interlayer tunnelling which is 
essential for the component a,,. 

The paper is organised as follows: in 8 1 we present the formalism; we then calculate 
a,, in 0 3, and a,, in § 4; conclusions and discussion follow in 0 5 and appendices 1 and 2 
detail some of the calculations used to arrive at the final results. 

2. The formalism 

2.1. Basic expressions 

We consider a many-body system described by the Hamiltonian 

H = H o  + A V - A . F ( t )  (1) 

where H o  is the largest part of H which can be diagonalised (analytically), A Vis a binary- 
type interaction, assumed non-diagonal, and - A  - F ( t )  is the external field Hamiltonian. 
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We will use a representation in which Ho is diagonal, indicated by d as subscript or 
superscript. 

For conductivity problems, F( t )  = qE(t) andA = Z(ri - (rJeq) = XI ai, q is the charge 
of the carriers (electrons), E is the electric field, and (rJeq, ri are the positions of 
the carriers before and after the application of the electric field. In the first Born 
approximation and for linear responses the diagonal part of the average current density 
reads [3] 

n + ( n [ ) t k p 5 )  p = x , y , z  (2) 
4 

(Jp)d)r = Gx (a[( 5 f p 5  
5 

where R is the volume of the system. Furthermore, apt = (f I apI f), I f) is the one-particle 
eigenstate of ho ( H o  = Eho), (nt)[ is the average occupancy of the state I f) and %&n5), is 
the collision integral of the quantum Boltzmann equation for scattering between dif- 
ferent particles (one-body collisions [3] or like particles (two-body collisions) [4]. The 
second term of (2)  is the usual diffusive (or ponderomotive) current; the first term of 
(2) ,  absent in a semiclassical treatment, represents many-body contributions of collisions 
to the current and has been termed 'collisional' current. 

The non-diagonal part of the current density leads to an expression for a$ (cf 
reference [3],  equation (3.21)) which is independent of the interaction. For the present 
problem it can be shown that 0;: and 0:: vanish identically; the component 0;; has been 
evaluated in [2]. 

The total conductivity is given by opu = oiu + 0;:. 

2.1.1. One-body collisions. If only the ponderomotive current exists, the DC conductivity 
tensor oiu,  corresponding to (2)  is given by (cf reference [3],  equation (2.55)) 

where uPLt = kp5 and z( E ~ )  is the relaxation time depending on the one-particleeigenvalue 
E [ .  If we have only 'collisional' current the DC conductivity tensor reads (cf reference 
[ 3 ] ,  equation (2.84) for p = v). 

0 = 8q2/2R E (nt)eq(l  - (n[oeq)W5&p5 - apt')2.  ( 4 )  
5,  5' 
spin 

Here = l / kBT ,  Tis the temperature, and W5(, is the binary transition rate given by the 
Golden Rule. Equation (3) is valid for elastic or nearly elastic collisions, whereas formula 
(4) holds for both elastic and inelastic collisions. 

When electrons interact with randomly distributed impurities (assumed to remain at 
equilibrium) the transition rate W,,,, appearing in (3) and ( 4 ) ,  is given by 

where N I  is the impurity concentration, R is the volume, U(q) is the Fourier transform 
of the impurity potential U(r - R ) ,  and r,  R are the positions of the electron and the 
impurity, respectively. 
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2.2. Superlattice in a magneticfield 

We consider a superlattice which consists of n identical potential wells, of width d ,  
separated by n identical barriers of width b and constant potential height V ( z )  = W. A 
magnetic field B is applied along the superlattice direction (B = B2). In the Landau 
gauge the one-electron Hamiltonian ho, eigenstates I C) ,  and eigenvalues c6 read ( P  is 
the momentum operator). 

ho = (P + eA)2/2m* + W (6) 

IC) (7)  

E <  E ~ N , i , k ,  = ( N + i ) h u o  + c i ( k z )  N=O,I.,. . ., i=  1,2,. . . (8) 

A = (0 ,  Bx, 0 )  

I N ,  k y )  CG In, i ,  k , )  = q N ( x  - L2k , ) ( e ikyy /q )  CG In, i, k , )  

where wo = lelB/m* is the cyclotron frequency, 1 = (h/m*oo)1/2 is the radius of the 
cyclotron orbit ,A is the vector potential, and m* is the effective mass in the well. Further, 
plN(x) are the harmonic-oscillator wavefunctions, with Landau-level index N ,  and 
In, i ,  k,) is the wavefunction in the z direction with eigenvalue ci(kr),  i being the miniband 
index. The wavevectors in the y and z direction are ky and k,, respectively. We assume 
that each well and barrier has a width of the order of 100 A and the total length of the 
superlattice, L, = n(d + b) = nc, is much smaller than the other dimensions L, and L,. 
That is, the superlattice is a series of n quasi-two-dimensional wells separated by n quasi- 
two-dimensional barriers. 

For the calculations of the following sections, we need the matrix element (c' 1 eiq'r) 6). 
Using (7)  we find 

l(C'leiq'rlC)12 = IJNw(qx, k , ,  k ; ) 1 2 a k y , k ;  + J ( n r ,  i', k:leiq+, i ,  k,)I2 (9) 
where 

here U = l2(q: + q;)/2, and L g ( u )  is a Laguerre polynomial. 

3. Conduction parallel to the superlattice planes 

3.1. The component U,, 

We take the electric field along the x or y direction. As is well known, the diagonal (in 
the representation of (7)) velocity matrix elements which appear in (3) ( v  = ,U = x )  
vanish, so that the ponderomotive (or diffusive) contribution to the current is zero. We 
are left with (4) in which 

a,< = (cl4C) = 12ky. (11) 
Furthermore, the last factor in (9) is denoted by Z i ~ , , ~ ( q , )  = [ (n ' ,  i ' ,  k:  le1qz21n, i, k,)12 
where we have suppressed the dependence on i f  and k: in view of the approximations 
that will follow. 

We assume that the electrons are scattered quasi-elastically by randomly distributed 
impurities only within the wells where most of the electrons are found [5] .  We write the 
impurity potential U(r - R ) ,  where r and R are the positions of the electron and of the 
impurity, respectively, as Z,Uqei4" in Fourier space. Since each well is quasi-two- 
dimensional we approximate U,, by its two-dimensional version U,,,(q, = q,R + q y j ) .  
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3.1.1. Long-range potentialS. For U(r)  = (e2/Eor) e-ksr, where eo is the dielectric con- 
stant and k, the inverse screening length, we have, in two dimensions, U ( q )  = ( 2 ? ~ e ~ / ~ ~ )  
(4: + kt)-1/2. Now, due to the Kronecker delta in (9) the factor (apc - C X ~ ~ , ) ~  in (4) 
becomes, with the help of ( l l ) ,  14q; for ,U = x and Z4q: for p = y .  The remainder of the 
dependence of the conductivity on q L  is the same in both cases. We can therefore use 
the symmetry a,, = (axx + 0,,)/2 to replace 14q; by 212u. Moreover, since we are con- 
sidering elastic scattering and the inter-miniband separation is usually large, of the order 
of 20 meV for GaAs, we neglect any inter-miniband transitions allowed by the energy 
conserving b-function, appearing in Wcc8, cf. equation ( 5 ) .  With all these details and 
Q + A. = L,L,, in (4) and (9, we obtain 

where we put = fN,,,kZ, the Fermi-Dirac function, and where U. = 2ne2/.5,. Due 
to the exponential e-u, in (lo), the major contribution to the integral over 
q L ( 2  ~~ + (A0/2n12) J; du)  comes from small values of U = l2q:/2. Therefore, for 
q L  k ,  we can neglect the term q: in (4: + I?:)-'. Alternatively, we can expand 
(4: + k:)-'  in powers of q : / k : ,  the leading contribution being l/k: for q1 < k,. Also, 
as shown in appendix 1, Z,kAi(qZ) is one or two orders of magnitude larger than 
I:;,,,,, ( q 2 )  if the barriers are not too thin. Usually, the first miniband in (A1GaAs)GaAs 
is very narrow, a few meV, but not the second. Therefore for the first miniband it is 
reasonable to approximate the sum over k: by its value for k:  = k ,  ; it is a poor approxi- 
mation for the second miniband, but we make it in order to avoid excessive numerical 
work. Furthermore, the sum over k, in (12), using 0 s 12ky = xo 6 L, gives a factor A,/ 
2 d 2 .  Taking spin into account we obtain from (12) 

where a. = ( N , U i / k $ l 2 )  and E~ = ( N  + b)fioo. Since the wells are identical Z,kii(q,) is 
independent of the well index, Z,kii(qZ) = Z f z ( q 2 ) .  The integral over U is equal to 
N + N' + 1. As for the b-function we replace it by a Lorentzian, of width Ti and of shift 
zero, and from the sum over N' we retain the largest contribution which occurs for 
N' = N .  This is equivalent to neglecting, for elastic scattering, inter-Landau-level tran- 
sitions. Then (13) gives 

Since the energy levels of an isolated well, of height W ,  fall within the minibands of 
the superlattice [6] it is a reasonable approximation, when the latter are narrow, to 
neglect the dependence of Z f z ( q , )  on k, and to evaluate Zi(q,) using the wavefunctions 
of the isolated well. Again, the approximation is good only for the lowest miniband. 
This is done in appendix 1 with account taken of the effective-mass difference between 
wells and barriers; then Z, = Zq2ZL(q2) is evaluated numerically. To proceed further we 
need to know the k,-dispersion of the energy spectrum. We evaluate it numerically using 
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equation (3) of reference [7 ] ,  which takes into account the effective-mass difference 
between wells and barriers. In many cases, depending on the values of the barrier width 
and height, the ci(kz) versus k, dispersion relation can be well approximated by a straight 
line of slope Ai: ci(ka) = + Aik,, where ci is the bottom of the ith miniband (see 
references [ l ,  21 and [8]). We can then do the sum over k,, in (14), analytically 
by transforming it into an integral. With zkz + 2(c/2n) s i 0  dk,, ko = n/c ( ~ ~ ( k , )  = 
&;(-IC*)) and/3fs(l -fs) = -8f/8cswe obtain from (14) and (A2.1) 

where bNi = cF - ci - ( N  + 1/2)hwo and Aiko is the bandwidth of the ith miniband. The 
quantity in the curly brackets has maxima for bNi+ Aik0/2 and only the Nth level 
contributes appreciably when eF - - Aik0/2 is at this level. For bNi S Aiko/2 the same 
quantity tends to zero, i.e. we have well-defined Shubnikov-de Haas oscillations as 
observed, cf. references [ l ,  10, 111 with period boo. The peak value of the conductivity 
obtained for bNi + Aiko/2 becomes 

e' Ti  
nh i Aiko 

a P  = - n(2N + 1) E - tanh(/3Aiko/4). 

For (/3A,k0/4) = 2, apisindependent of temperaturesince tanh(. . .) + 1. However, the 
minima of (15), occurring for bN, S A,ko/2, show an activated behaviour, as observed 
[l], since { .  . . }  = e-B(bNi -J * ,ko )  for PbNI S 1 and bN, 9 A,ko/2. 

The peak values a P  of the conductivity, as given by (16), are in good agreement with 
the experimental values of [l]. For example, using the experimental values for the 
resistivities px. and pxy in axx = ~ , , / ( p : ~  + p:y) we obtain, at B = 6 T,  CJP = 1.1 X 

S2-l. The first miniband width A,ko is 2.5 meV, N = 1, n = 30, and T = 150 mK. For the 
given [2] superlattice specifications we obtain from (A1.4) and (A2.1) rl = 2.6 meV for 
k,l= 5. Equation (16) then gives op = 1.35 X S2-l which is slightly above the 
experimental value. 

To arrive at (15) we have used the approximation E,(k,) = E, + A,k, instead of the 
tight-binding expression ~,(k,)  = E, + (Al/2) cos k,c, where E, and A, are the centre and 
the width of the ith miniband, respectively. We did so because the integral over k,, in 
(14), is very cumbersome when the latter expression is used for finite temperatures. 
Near zero temperature, however, it can be done with the approximation /3fi.(1 - fi) = 
&(es - E ~ ) ;  the result for a,,, corresponding to (15) for T+ 0, is 

where bNi = cF - Ei - ( N  + i)hcoo. Equation (16') diverges for bNi + &/2 showing 
clearly the oscillations of a,, with changing magnetic field. These divergences are 
removed when the &function is broadened but the result is too unwieldy to be given 
here. The advantage of (15) is that the approximate result for a,, is simple and valid for 
finite temperatures. 

The maxima of (15) and (16') occur when - ei - Aiko = ( N  + i )hwo  and 
- E;: - Ai/2 = ( N  + t )hoo ,  respectively. Since the left-hand sides of these expressions 

change when the Fermi level passes through the minibands so does the period of the 
oscillations. This behaviour has been observed in [l l] .  
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Figure 1. Magnetoconductivity U,,, in units of 
uo = e2n/nh,  versus magnetic field for i = 1 at T = 
4 K. N denotes the Landau levels. 
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FigureZ. Densityofstates,inunitsofN, = (A+/ 
n2fi)Tesla versus magnetic field for i = 1. N 
denotes the Landau levels. 

The oscillations of (15), as the magnetic field varies (i.e. as bNi + Aik0/2 changes) are 
also present in the density of states as a function of the magnetic field. Using the same 
approximation for the dispersion relation and a Lorentzian broadening of the &function 
we obtain 

N ( E )  = 2 S ( E  - - Aikz - (N + & ) f i ~ o )  
N ,  n ,  i. k, ,  k ,  

nAoc k0 dkz 
E x g r d  0 (bNi - Aiko)2 + ri 

= N~ 2 {tan-l[(Aiko - bNi)/ri l  + tan-1(bNi/ri))/Aiko (17) 
N ,  i 

where N o  = nAo/z2l2.  Equation (17) shows maxima for bNi+ Aik0/2, of value 
2 N a i  tan-l(Aiko/2ri)Aiko and minima for bNi S Aiko/2, of value + 0. The oscillations of 
the conductivity (equation (15)) and of the density of states (equation (17)) as the 
magnetic field varies, are shown in figures 1 and 2, respectively for i = 1. In either case 
only the Nth term of the sum over N contributes appreciably. The calculations are done 
numerically for (A1)GaAs-GaAs using the parameters of appendix A1 and equation 
(A2.1) for rl. 

The numerical results of [lo,  111 for the density of states and the conductivity, 
without, e.g., the approximation si(kz) -- si + Aik,, show a similar oscillatory depen- 
dence on the magnetic field thus indicating that the approximation is reasonable. The 
same holds for the density of states [2,15] and the thermopower [15] when one uses the 
tight-binding dispersion relation si(kz) = Ei + (Ai /2)  cos(k,c). This behaviour is in line 
with the fact that the Fermi level sF, as determined (in general numerically) from the 
total number of electrons Ne = J N(s)JC(s) d s ,  oscillates as the magnetic field B varies. 
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For an analytical solution of this dependence, valid for finite temperatures, see reference 
1151. 

3.1.2. Short-range potentials. For U(r) = Ud(r ) ,  i.e., when the screening is complete, 
the results (12) to (17) can be taken over by replacing Uo/k,  by U,,, where uo is the 
Fourier transform (a constant, proportional to U )  of the potential. Of course, in this 
case we do not have to make the approximation qL k,. 

3.2. The component arx 

For completeness we give the result for ayx. The calculation is reported in [2], in which 
only the lowest miniband, assumed to be very narrow, has been taken into consideration. 
If more minibands are occupied the result is easily obtained and reads (cf reference [2], 
equation (9) with L, = 1). 

For narrow minibands, $ 2  (0), can be approximated by Zi(0) as evaluated in appendix 1, 
cf. (A1.8), and is of order or smaller [2]. Then, for a nearly linear dispersion 
relation, at finite temperatures, equation (18) gives, to order 

The first term of ( 1 9 ,  obtained from (18) forfN,i,k, 1, is the result at zero temperature; 
the second term represents the finite temperatures corrections and vanishes as Ai -+ 0, 
i.e., as the limit of isolated quantum wells (with no energy dispersion in the z direction) 
is approached. We also notice that for exp(/3bNi) S=- 1 and bNi > Aiko, the second term in 
(19) takes the form - ( N +  l)Zi exp[- /3(bNi - Aik0/2)] (/3Aiko)-' and for i  = 1 we have a 
simple activated behaviour for Aayx( T )  = ayx(0) - ayx( T )  as in the two-dimensional 
case [9]. 

4. Conduction along the superlattice: U, 

We take the electric field along the superlattice direction z .  To use (3) we must first 
calculate U, = ([lzlt). For an infinitely deep quantum well U, = 0 as in the case for an 
isolated well of finite weight W .  Even in the limit of very thin barriers ('Kronig-Penney' 
model) U,, which is independent of the magnetic fieldB = Bi, is zero for the largest part 
of the first Brillouin zone [13]. Since we do not consider very thin barriers, we expect 
that U, is close to zero, i.e. that the diffusion contribution to the current (if at all) 
expressed by (3) vanishes. Thus we are left with the 'collisional' contribution as expressed 
by (4), i.e., we consider only tunnelling (or hopping) of electrons, that are nearly 
localised in the wells, across the barriers when the electric field is applied. 

We now remark that for conduction along the superlattice, i.e. through the barriers, 
the quantity aZYzt - azf,, appearing in Eq. (4), is the mean distance involved in the 
transition [-+ t' (WYztYzt,(azC - az5,) is the mean probable distance per unit time that an 
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Figure 3. Magnetoconductivity uz,, in units of 
ah = (e2n/nh) (c2e/ f i )  Tesla, versus magnetic 
field for i = 1 at T = 4 K.  N denotes the Landau 
levels. 

electron travels along the z direction). Since the mean abscissa Z , , i , k  is the centre of the 
nth well in the absence of the electric field, we have 

We will assume that the barrier widths and heights are such that the transition prob- 
abilities Weer are different from zero only for n, n' corresponding to neighbouring wells 
and zero otherwise. This is supported by the values of Zk,;n*l,i(q,) for narrow minibands, 
as shown in appendix 1. 

The calculation of the conductivity a,, proceeds almost exactly as in 0 3 .  Instead of 
( 1 1 )  we use (20); corresponding to (13 )  we now obtain 

The integral over U is equal to 1 and the quantity I$,+ l , i (q2 )  denoted by ( q z )  and 
evaluated in appendix 1, is independent of n if we neglect boundary effects. The rest of 
the approximations are the same as those following (13 ) .  Corresponding to (14 )  for a,, 
we obtain 

andin (15) and (16) we have to replace (2N + l)Tiby (c2 /2 l2)r ;  toget thecorresponding 
result for uz,. Therefore, a,, oscillates as function of the magnetic field and with the 
same period as a,,, i.e., Tzuo. This is illustrated in figure 3, where a,, (cf equation (15) 
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with (2N + l)rl+ (c2/2Z2)ri is plotted versus B. It is interesting to take the ratio 
a,/a,, for i = 1. From (15) or (16), for a,,, and the corresponding equations for a,, we 
obtain, if we consider only the dominant contribution to the sum over N 

Y = U&,, = 2 ( 2 ~  + I) (z2/c2) (rl/r ;). (23) 

The precise value of r depends on the magnetic field and the superlattice parameters; 
it increases with decreasing magnetic field (due to the factor 1 in (2N + 1) since N 
1/B, cf. references [l] and [lo]. This is due to the fact that as B becomes weaker a,, 
decreases, cf. equation (15) with (2N + l ) r l +  (c2/2Z2)r;. This behaviour of a,, with 
B is similar to that obtained before for a three-dimensional sample [14]. Also, that r 
increases with decreasing B is in line with the expectation that the carriers acquire more 
freedom in the x direction as B becomes weaker. 

5. Concluding remarks 

We have shown analytically that well-defined Shubnikov-de Haas oscillations exist in 
superlattices with narrow minibands, whether the electric field is parallel to the layers 
or perpendicular to them, when a magnetic field is applied perpendicular to the layers. 
The results are quite simple and transparent and, to our knowledge, new at least in 
the form given here. Moreover, they are in reasonable agreement with the available 
experimental data. This is particularly true for (i) the period of the oscillations, (ii) the 
order of magnitude, and (iii) the activated behaviour of a,,, for which some data exist 
[l]. For want of data we cannot check points (ii) and (iii) for a,, although we expect a 
similar qualitative agreement, The comparison of ayx with the available experimental 
data [ 11 was made in reference [2]. 

It is perhaps of interest to point out the difference between transport parallel to and 
normal to the layers. In the former case, we have, for elastic impurity scattering, intra- 
Landau-level collisions whereas in the latter we have elastic tunnelling across a barrier. 
As expected and as reflected by (23), for magnetic fields such that Z ̂ I c, the conductivity 
parallel to the layers is much larger than that along the superlattice axis if the barriers 
are not too thin, since r; 

For the results of this paper we have relied extensively on some characteristics of the 
isolated quantum well with the same energy barrier as the superlattice and of two 
quantum wells separated by the superlattice barrier width. Apart from being instructive, 
this was done in order to avoid excessive numerical work. Therefore part of any dis- 
agreement with the experiments is to be ascribed to the difference between these 
characteristics and the ones pertaining to a superlattice. 

A second limitation of the present results is that they apply only for weak electric 
fields since we used linear response theory. This allowed us to neglect the tilting of wells 
and barriers and thus to avoid further numerical work. 

We have not considered at all the case of the magnetic field parallel to the layers. 
Although much more interesting, this case is much more complicated and one has to 
perform extensive numerical calculations [8]. 

Despite the above limitations, the results appear to be in reasonable agreement with 
the available experimental data. Obvious refinements as well as consideration of other 
ihteractions (e.g. electron-phonon interaction) and other effects (e.g. cyclotron-res- 
onance) are left for future work. 

r, cf appendices 1 and 2. 
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Appendix 1 

Below we outline the calculation of the quantities Z,kii(q,) = Zfz)(q,), and 
Zt;n+l,i(q,) = Z i k z ( q z )  which appear in the text, cf equations (13)-(16) and equations 
(21)-(22). We use for the calculation the wavefunctions of an isolated well, of width d 
and energy depth W, modifying slightly the procedure of reference [13] to take account 
of the effective-mass difference between wells and barriers. The normalised wavefunc- 
tion is written as 

Ci sin ai  exp[xi(z - zl)]  z < 21 

q i ( z )  = C, sin[ki(z - z l )  + S i ]  2 < 2 < z 2  (Al . l )  

sin ai  exp[-xi(z - z 2 ) ]  z > 22 

i = 1 , 2 , .  . . . (A1.2) 

where xi = [2mz (W - ~ , ) ] ' /~ / f i ,  ki = ( 2 m ; ~ ~ ) ~ / ' / h ,  CT = (d/2 + 1/xi)-' and ai = 
tan-' (mz ki/mExi). The effective massesin the well and barrier are m; andm; , respect- 
ively. The eigenvalues 

kid + 26, = in 

To obtain (A1.2) we used the continuity of the wavefunction and of the quantity 
( l /m*)dq/dz at the boundaries z1 and z2. 

The quantity Z, = 2q,Zi(qz) + (c /2n)  J ii(q,) dq, ,  appearing in (A2.1), (15) and 
(16), is given by the last factor in (9) for i' = i and n' = n ,  upon neglecting its k, 
dependence 

i 
are given by 

Zi = (c/2n) 1 I(n, i)l e i q z z  In, i)I2 dq,. (A1.3) 

Since the result must be independent of the well index n we use (Al .  1) and Parseval's 
theorem to obtain (c = d + b )  

(A1.4) 

The only dependence of Zi on the barrier width b is through c and 1 - exp( -2x,b) = 1 for 
xib > 1. Using the parameters given after (A1.9) (see below) we obtain Zl -2.5 x 10-l. 

We now turn to the evaluation of ZI (4 , )  and of ZI = ZqLZI ( q z ) .  Taking the origin at 
the centre of a barrier (of width b)  separating the nth and the (n  + 1)th wells we remark 
that 

q : + ' ( z )  = (-l) i- lq:(--z) .  (A1.5) 
It follows that 

j i (q , )  = [q7(z)]* eiqzzq:+l(z) d z  = (-l) '+ 'Ji(-qZ) + J i ( q , )  (A1.6) 

with 
--cE 
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(A1.7) 

The integration over z ,  which includes the barrier region in conjunction with (A1.9,  
is done analytically but the result is too lengthy to be given here. A relatively simple 
result is obtained upon neglecting terms proportional to exp( -x ic )  in front of terms 
varying like exp( -xib). With q, = q we obtain 

I! (4) = IJi(q)l2 -- 4 ~ 4  sin4 Si 

sin L 2xf(x: + k;) cos L - q(3xf - kf)q2)  sin L 
(A1.8) (x; + kf - q 2 ) 2  + 4q2xf 

where L = qb/2. For q + 0 we get the square of the overlap integral between neigh- 
bouring wells as 

(A1.9) 

As expected, both (A1.8) and (A1.9) fall exponentially with increasing barrier width 
b. The final integration over qz = is done numerically using not (A1.8) but the exact 

0.092mo we obtain ( I ;  = X q z Z ;  (q , ) ) ,  I ;  - 1 x I ;  - 2.25 X lo-', 1; - 2.3 X 
lo-'. Notice that I ;  is about two orders of magnitude smaller than 11, cf (A1.4). 

result for I /  (4). For d = 188 f , b = 40& W = 100 meV, m: = 0.67mo, mz = 

Appendix 2 

The level widths Ti,  r; which appear in the text are estimated from the scattering rate: 
T r  = h/i/sc with l/t, = Z r  Wrc,. We use ( 5 ) ,  (9) and (10). In (9) we neglect the depen- 
dence on k, and we take i = i'. For r ,we take n' = nand for Ti , n' = n + 1 corresponding 
to conduction normal to and along the superlattice direction, respectively. For the 
screened interaction U(r)  = (e2/q,r)  exp(-k,r) we neglect q: in front of ki .  Keeping 
only the largest contribution from the sum over N' and k: (i.e. N' = Nand k: = k, only) 
and replacing the b-function in (5) by a Lorentzian we obtain 

Ti -- [ZiNIU~/n12k~]1/2 = [ Z ; O ~ ] ' / ~ .  (A2.1) 

Ts = h/t ,  with 1/t, = Xc WscJ.  We use ( 5 ) ,  (9) and (10). In (9) we neglect the depen- 
k, must be replaced by U. where U. (=constant) is the Fourier transform of the potential. 
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